

HYDRAULIC FRACTURING CATALOG

www.ironhorsechemicals.com

CONTENTS

Polymer Line	5
Cross Linked Fluid Systems	6
Phase Interaction	7
Clay Management	8
Scale & Iron Control	9
Biocides	10
Breakers	11
Fracturing Diverter	12
Paraffin Control	13
Acids	14
Our Process	15
Fluid Testing	16

POLYMER PRODUCT LINE

The Iron Horse polymer chemistry product offering comprises of the following:

- Friction reducers, both liquid and dry add based for a variety of water chemistry and temperature conditions.
- High viscosity friction reducers (HVFR) in liquid/ dry and slurry compositions for a variety of water chemistry and temperature conditions. Developed with unique clay free suspension system
- Viscosity Enhancer additive that can be added to Xanthan and Friction Reducers to increase 10-12 cPS

Application	Range	IHC Name
Fresh Water FR	>10,000	FR-10
Fresh Water High Viscosity	>50,000	FR-10 HV
Fresh Water - Mid Brine	>100,000	FR-20
Fresh - Mid High Viscosity	0 - 170,000	FR-20 HV
Mid Brine	35,000 - 140,000	FR-25
High Brine	50,000 - 180,000	FR-30
Fresh Water - Mid Brine	0 - 150,000	FR-21
Fresh Water - Mid Brine	0 - 120,000	FR-22
High Brine High Visosity	50,000 - 230,000	FR-30 HV
Cationic Mid-High Brine Viscosity	50,000 - 260,000	FR - 31 CV
Cationic Mid-High Brine Viscosity	75,000 - 250,000	FR-32 CV
Fresh Water - Mid Brine Viscosity	0-150,000	FR-101V
Fresh Water - Mid Brine Viscosity	0-150,000	FR-102V
Fresh Water	0 - 30,000	FR-103
Fresh Water	0-30,000	FR-104
Mid Brine	50,000 - 120,000	FR-201
Mid Brine	30,000 - 100,000	FR-202

CROSS LINKED FLUID SYSTEMS

The Iron Horse cross-linked fluid systems include options for:

- Borate Cross Link systems low & high pH instant or delayed options
- CMHPG Cross Link systems low and high pH instant or delayed options
- Titanium Cross Link Systems Extreme heat

PHASE INTERACTION

The IHC product offering to mange phase, liquid/liquid, liquid/rock surface interactions is very robust and includes the following categories:

- Non-Emulsifiers for preventing hydrocarbon/ formation water/ frac water emulsions by surface tension and interfacial tension reduction.
- Flow Back Surfactants to aid in load water and gas/ hydrocarbon liquid recovery tailored to oil/ condensate liquids rich producing reservoirs.
- Flow Back Surfactants that are tailored to load water recovery in dry/ wet gas applications.
- Novel chemistry formulations developed to enhance and improve hydrocarbon production.
- Spear- head and pad breakdown chemistries for cold temperature and paraffinic reservoirs.

Application	IHC Name
Non-Emulsifier	DM-150
Non-Emulsifier	DM-155
Non-Emulsifier	DM-160
Non-Emulsifier	DM-165
Non-Emulsifier	DM-170
Flow Back Surfactant	NK-50
Flow Back Surfactant	NK-75
Flow Back Surfactant	NK-100
Flow Back Surfactant	NK-200
Flow Back Aid	FA-50
Spear Head Surfactant	DET-376
Spear Head Surfactant	DET-377
Spear Head Surfactant	DET-378
Spear Head Surfactant	DET-381

CLAY MANAGEMENT

The IHC shale and clay chemistry product offering comprises of the following:

- Temporary and permanent control technologies
- Clay migration technologies ICC-500
- Combination clay and iron control additives for enhanced flow back that eliminates the iron solids

Chemistry types include:

- Unique polymer/ bio based synthesized materials
- Surfactant based
- Amines, ether amines, imines

Application	IHC Name
Clay Control	CC-10
Clay Control	CC-20
Clay Control	CC-30
Clay Control	CC-40
Clay Control	CC-50
Clay Control	CC-60
Clay Control	CC-70
Clay / Iron Control	ICC-400
Clay / Iron Control	ICC-405
Clay / Iron Control	ICC-410

SCALE AND IRON CONTROL

Mixing of incompatible formation and injected waters; changes in temperature and pressure over the producing well; corrosion and issues caused by injection of various chemicals can all contribute to mineral scale buildup in the reservoir, on tubing and equipment.

This results in slowing oil and gas flow and degrading equipment performance, negatively affecting a well's flow rate. Our scale management chemistry performs across a broad range of minerals and offers exceptional results for both topside and downhole scaling.

The Iron Horse Chemicals product offering includes:

- Chelation and sequestration technology
- Dispersant technology
- Threshold style inhibitors

For fracturing and re frac applications, IHC has unique solid formulations for proppant pack treatment

Application	IHC Name
Scale Inhibition	SCALE 802
Scale Inhibition	SCALE 803
Scale Inhibition	SCALE 804
Scale Inhibition	SCALE 814
Scale Inhibition	SCALE 811
Scale Inhibition	SCALE 812
Scale Inhibition	SCALE 813
Scale Inhibition	SCALE 791
Scale Inhibition	SCALE 722
Scale Inhibition	SCALE 784
Scale Inhibition	SCALE 787

BIOCIDES

Oilfield bacteria, which includes sulfate-reducing bacteria (SRB), acid-producing bacteria (APB), is found throughout the process from reservoir to sales. During a fracturing operation, unchecked bacteria can cause fouling and sour the formation.

To mitigate these damages, IHC can provide a broad range of registered biocides to handle the problem. Through pre-job planning and testing, we can provide an accurate treat rate to ensure an effective kill on the fluids that are being injected into the formation.

Listed below are the most common, but we have a larger catalog for different applications.

Application	IHC Name
10% DDAC	DDQ10
50% DDAC	DDQ-50
20% DBNPA	DB-20
5% Glut 10% Mixed Quats	BIO-510
12% Glut 3% Mixed Quats	BIO-1203
25% Glut 12% Mixed Quats	BIO-2512

BREAKERS

Once the proppant is placed in the formation, the viscosity of the fracturing fluid must be 'broken' to flow back to surface during operations. This process ensures that the proppant stays in the formation and the maximum amount of fluid is returned out of the well.

Breakers are used to lower fluid viscosity by 'breaking' the cross-linked fluid or polymers in the fluid system.

Our product line includes:

- Encapsulated
- Non-Encapsulated
- Liquid Breakers
- Powder Breakers
- Enzymes

FRACTURING DIVERTER

Our patent pending PLA diverter for far field diversion applied during fracture stimulations includes a particle blend that bridges at the fracture tip and provides fracture geometry control.

Far Field Diverter minimizes communication to offset wells (parent / child relationship) and fracturing into undesirable (depleted) zones. The Far Field diverter also creates a more complex fracture network, resulting in more stimulated rock and drainage.

Our Far Field diverter is biodegradable and hydrolyzes based upon reservoir temperature, pressure, and water to a clear, non-hazardous liquid.

- PLA Polylactic acid
- Our liquid suspension package allows for ease of pumping on demand
- Blend of patent pending particle sizes that bridge at the fracture tip
- Minimizes risk of communicating to offset wells (parent/child relationship)
- Minimizes risk of fracturing into undesirable zones; depleted zones
- Degrades by BHST without leaving residue
- Creates complex fracturing network for enhanced drainage

PARAFFIN CONTROL

Changes in temperature and pressure over the producing well; can contribute to paraffin buildup in the reservoir, on tubing and equipment. This can result in slowing oil and gas flow and degrading equipment performance, negatively affecting a well's flow rate.

Our paraffin chemistry is custom designed to the formation being fractured and works across a broad range of hydrocarbons. Utilizing the right chemistry offers exceptional results for both topside and downhole challenges.

The Iron Horse Chemicals product offering includes:

- Solvents
- Dispersants
- Inhibitors

For fracturing and re frac applications, IHC has unique solid formulations for proppant pack treatment

ACIDS

Understanding the type of formation being acidized and details of its composition (mineralogy) is critical to achieving positive results. Downhole temperature, pressure, production type and the acquisition of field samples will enhance the success of a program.

Hydrochloric Acid (HCI): This is a highly corrosive and strong acid used in well stimulation and various acidizing processes. It is commonly used to dissolve mineral deposits and stimulate reservoirs by creating or enlarging fractures, thereby improving hydrocarbon flow. Available in any blend up to 36% concentrate.

Hydrofluoric Acid (HF): An aqueous solution of hydrogen fluoride

Organic Acids: Formic, acetic, and citric acid are other acids commonly employed in acidizing treatments. They are less corrosive than HCl but still effective in dissolving carbonate formations and enhancing production rates.

SYN / Green Acid: A safer alternative to HCL and organic acids.

- pH zero
- Non-corrosive
- Non-skin, non-eye irritant, non-fuming
- Not D.O.T. regulated
- No special requirements for disposal

Acetic Acid	Acetic acid solutions
Citric Acid	Citric acid (solid and solutions) Formic acid solutions Hydrochloric acid solutions
Formic Acid	Safer acid alternative to traditional strong acids, various options are available depending on the acid to be
Hydrochloric Acid	replaced and the strength of the acid
SYN ACID	Acetic acid solutions

OUR PROCESS

Primary Frac Fluid Design includes testing every chemistry and modifying the fracturing package to enhance well performance.

Physical Samples

- Crude Oil or Condensate (Chemical free) 5 gallons
- Formation water (Chemical free) 5 gallons
- Frac Water (Base fluid for fracing) 5 gallons 100 gallons more required dependent upon flow loop testing
- Formation cuttings (not washed) 1 -5 lbs. total is ideal (heel, middle, toe 1-2 lbs. each)

Data and Information

- Frac Design
- Geology reports (Porosity, Permeability, etc.)
- Formation Type Description
- Water Analyses (Frac Fluid, Produced Water)
- Hydrocarbon Analyses (Oil, Condensates, Gas)
- Testing (Core/Compatibilities etc.)

FLUID TESTING

General testing conducted to select the chemistry includes:

- Low and high shear demulse studies
- Flow loop testing
- Surfactant Testing
- Flow Back Testing
- Bacterial Testing
- Breaker Testing
- Viscosity Testing
- Water analysis and compatibilities for scale control
- XRD of bulk and clay fractions for clay/shale management
- CST/ roller oven for clay/ shale management
- IFT oil flow/mobility
- Compatibilities of entire fluid system to ensure all additives combined are compatible with one another

